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A B S T R A C T  

Let k be an algebraically closed field of chm'acteristic p > 0 and R be a 
suitable valuation ring of characteristic 0~ dominating the Wit t  vectors 
W(k). We show how Lubin-Tate formal groups can be used to lift those 
order p"  automorphisms of k[Z] to R[Z'~, which occur as endolnorphisms 
of a formal group over k of suitable height. We apply this result to prove 
the existence of smooth liftings of galois covers of smooth curves from 
characteristic p to characteristic 0, provided the p-part of the inertia 
groups acting on the completion of the local rings at the points of the 
cover over k are p-power cyclic and determined by an endomorphism of 
a suitable formal group over k. 

1. I n t r o d u c t i o n  

T h e  a i m  of  t h i s  n o t e  is to  b u i l d  o n  r e c e n t  w o r k  o n  l i f t ings  of  ga lo i s  covers  of  

s m o o t h  c u r v e s  de f ined  over  a n  a l g e b r a i c a l l y  c losed  field k of c h a r a c t e r i s t i c  p,  

to  r e l a t i v e  s m o o t h  ga lo i s  cover s  of  c u r v e s  ove r  a s u i t a b l e  v a l u a t i o n  r i n g  R of  

c h a r a c t e r i s t i c  0, d o m i n a t i n g  t h e  W i t t  v e c t o r s  W(k) .  

D u e  to  a l o c a l - g l o b a l - p r i n c i p l e  for l i f t i ng  ga lo i s  cover s  of  s m o o t h  cu rves ,  t h i s  

p r o b l e m  r e d u c e s  to  t h e  p r o b l e m  of  l i f t ing  g r o u p s  of  a u t o m o r p h i s m s  of  a f o r m a l  

p o w e r  ser ies  r i n g  over  k to  g r o u p s  of  a u t o m o r p h i s m s  of  a f o r m a l  p o w e r  ser ies  

* T h e  a u t h o r  would like to express his t h a n k s  to the  M a x - P l a n c k - I n s t i t u t  fiir 
M a t h e m a t i k ,  Bonn,  for i ts  hospi ta l i ty  and  suppor t ,  where  th is  research was done 
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ring over the valuation ring R dominating W(k). Thus we are led to the study 

of finite order automorphisms of the p-adic open disc and the geometry of their 

fixed points. In this context those of p-power order are crucial; see, for example, 

[G-M1], [G-M2] and [G]. The local-global-principle for liftings gives necessary 

and sufficient conditions, whereby liftings of the inertia groups acting on the 

completions of the local rings at the points of a galois cover of smooth curves 

over k, to smooth galois covers of the p-adic open disc over R, ensures a global 

lifting to a galois covering of smooth relative curves over R. The completed local 

rings are formal power series rings over k and R respectively, and so provide the 

setting for this investigation. 

In this short note we show how Lubin-Tate  formal groups can be used to lift. 

those order p~' automorphisms of k[Z] which occur as endomorphisms of a formal 

group F over k of suitable height h. This result is proved in Theorem 4.1 and 

follows directly from a number of classical results on formal groups, which we 

recall in section 3 for the convenience of the reader. 

In the final paragraph of section 4 we apply Theorem 4.1 together with the 

local-global-princil)le mentioned above to prove the existence of smooth liftings of 

galois covers of smooth curves fi'om characteristic p to characteristic 0, provided 

the p-part  of the inertia groups acting on the completion of the local rings at the 

points of the cover over k are l~-power cyclic and deternfined by an endomorphism 

of a suitable formal group over k. Precisely we prove: 

THEOREM 4.2: Let f: C ---+ C/G := D be a G-galois cover of proper integral 

smooth cm'ves over k. For each y E C we denote tile p-part of the corresponding 

inertia group b~" (Iy)p. Suppose that (Iy)p is p'~'J-cyclic and that. it'~y >_ 3, tile 

embedding (/y)~ C Aut~,(0c, y) -~ Aut~.(k~Z]) factol:~ through Aut~(F(Z , ,  Z2)) 

for some one dimensional formal group F( Z1, Z.2) over k of height 

hu = r p " ~ - l ( p -  1), (r,p) = 1. 

Let n = maxy(ny) and ~(,~) be a 1)rimitive p'-root of mlit3: Then f call be lifted 

over R = IV(k) [~(,,)] as a G-galois cover of smooth integral proper R-curves. 

2. Motivating questions 

SITUATION. Let k be an algebraically closed field of characteristic p > 0, and C 

be a proper smooth integral curve of genus g over k. Let R be a complete discrete 

valuation ring dominating the ring of Wit t  vectors W(k) and having uniformizing 

parameter  7~. V~ denote the quotient field of R by K,  which is assumed finite 
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over Quo t ( l l ' ( k ) ) ,  and the corresponding integral and algebraic closures by /) 

and /~ ' .  

NIoTIVATING QUESTIONS: Let  G be ~ tinite snbgronp of  Auth.(C) and sllpposc 

tlmt ( '  ~ D = C / G  is a finite galois cover o f  smooth  In'oper integral era'yes 

OVel '  ~'. 

1. G l o b a l  q u e s t i o n :  I.s it lmssilfle to find R as above and a finite galois cover 

o f  smooth  proper integrM relative (.nrves over R. C ~ 73 = C/G,  which lifts the 

given cover ( '  ~ D ? 

2.  L o c a l  q u e s t i o n :  Let  g E C m M  L~ be the as.socb~ted htortia gronp, so that 

I~j C_ Aut~.((~(,.:f) ~ Aut~:(k[Z~) fi~r ~ snit~l)le pm'amoter Z.  Is it possilfle to find 

R as above snch that the inertia g 'onp  lifts to I u C_ A u t n ( R [ Z ] ) 7  

Remark:  Clearly if the global question is satisfied, then tbr each g E C we have 

I~j C_- Autu(0c41)  = A u t n ( R l Z ~ )  tbr a suitable p a r a m e t e r  Z, so the local question 

is satisfied fi)r each point  y C C. The  converse of this result is also t rue and is 

the local-global-principle for liftings referred to in the introduction.  We refer the 

reader to [G-M1], Section I I I ,  for details and to [B-M6] and [He] ibr a l ternat ive 

proofs. 

HISTORICAL BACKGROUND. For a detailed account on developments  related to 

~his problem we refer to [So-O], [()2], [O-Se-Sl, [Se-S21, and [C-M1]. Briefly, 
we note tha t  if ([G],p) = 1 the answer to the global quest ion is yes for any R, 

1)y Grothendieek.  SGA I. If  IGI > 8 4 ( g -  1) then  the answer is no. due to a 

contradict ion using Hurwi tz  1)ounds. In ehararacter is t ic  p there exist curves C / k  

such tha t  one ('all ('hoose G with [G] > 84(.~j- 1). see [Re], but  ill characterist ic  0 

the order of the automorl )h ism group of a curve of gelms g is at  most  84(g - 1). 

()he remarks  tha t  if G is abel ian then, 1Jv Nale~jima, IN], the bomMs for G C 

Aut~. (C') are the same in any chara('tel 'istic and so ill this case one doesn ' t  expect 

a contradict ion using bomMs, So one speculates that  tbr su('h G smoo th  liftings 

may  always exist, and the first ease one studies is tor G ('yelie. The  first stel) 

ill this direction, 1)roved by Oort  Sekigu('hi Suwa in [O-Se-S],  shows tha t  if G 

is (')'(.lie of order pe, with (c,p) = 1. the answer is yes if R contains a 1)rimitive 

p-root  of rarity, say (.  

Following these results it be( 'ame na tura l  to conjecture the following generali- 

sat ion (see [Se-O]. [01] and [02]): 

OORT SEI,HGUCHI (!()N.JE('TI_'RE: The ;m.sner to the g h)l)al lifting qnestion is 

lmsitive i f  G is a cvcli(" group. 
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In  a number  of recent papers  (see, for example,  [G-M1], [B], [M], [P] and [G]) 

necessary conditions for the solvability of  the lifting problem when the p-par t s  of 

the inert ia  groups a ren ' t  cyclic are given. Examples  of e lementary  p abel ian covers 

which cannot  be lifted over any R are also given. Concerning the conjecture,  one 

of the main  results of {G-M1] answers it posit ively for G-galois covers whose 

inert ia groups are pne-eyclic with n < 2 and (e,p) = 1. More precisely one has: 

THEOREM 2.1 ([G-M1]): Let f: C --~ C / G  := D be a G-gMois cover of proper 

smooth curves over k. Assume that the inertia groups are pne-cyclic with n <_ 2 

and (e,p) = 1. Then f can be lifted over R = W(k)[((2)] as a G-galois cover of 

smooth R-curves, where ((2) is a primitive p2-root of unity. 

By the local-global-principle for liftings the crucial question is the local one, 

namely  tha t  of tile existence of liftings of G-galois covers of formal  power series 

rings k lZ] /k[Z]  a = k iT  ] over k (here T = 1-Lea  z ° ) ,  to a -ga lo is  covers of the 

formal  power series rings RN/RIZ  G = RIT] over R, for n and G as above. 

This  is the condition which ensures smoothness  of the lifting of curves. 

The  formal  power series ring R[Z] is a two dimensional  local ring with max imal  

ideal generated by Z and ~r, and its height one pr ime ideals are all principal.  If  

a E AutR(R[[Z])  then we can write 

a(Z)  = ao + a l Z  + a2Z 2 + a 3 Z  3 + . . . ,  

where ao C 7rR and a l E R ×. Observe tha t  reducing the coefficients of a modulo  

(lr), we obta in  a canonical surjective group homomorph i sm 

• : AutR(RIZ~)  ----+ Aut~(k[Z] ) .  

In view of the discussion above we are interested in the following questions: 

LIFTING QUESTIONS: 1. I l K  is a k-automorphism of k[Z~ of  t~nite order, when 

can we find a lifting of er to an R-automorphism of R{Z~ of the the same  order, 

i.e., an R-automorphism a of R[Z] of the the same order such that q~(a) = -~? 

More generally, if  G is a finite subgroup of  Aut~.(klZl) ,  when can one find a 

section of G in Autn (R[Z~)  with respect to q27 

2. I f  G is a finite group, give criteria depending on the structure of the group 

which need to be satisfied in order that a realisation G C Autk (k [ZI)  can be lifted 

to G c A u t R ( R [ Z ] ) ,  for some complete discrete valuation ring R dominating 

w(k)? 

The  first quest ion is the one we are concerned with here, for those order pn 

au tomorph i sms  P, which are also autonlorphisms of a formal  group over k of 

suitable height. 
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3. L u b i n - T a t e  f o r m a l  g r o u p  p r e r e q u i s i t e s  

In this section, for the convenience of the reader we briefly recall the classical 

results on formal groups over fields of characteristic p and Lubin- Tate liftings 

to formal groups over the appropriate valuation ring extending the Witt  vectors. 

These results were obtained by Hasse [H], Lazard [Laz], Tate and Lubin [L-T]. 

As a general reference we mention the book by tIazewinkel, [Haz]: Precisely, 

Theorem 19.4.1, on page 170 and Theorem 20.2.13, on pages 183---187 for the 

classical results 3.1 and 3.2, and section 8.1 on pages 43 45 and Proposition 

18.3.11 on page 152 for the classical results 3.3. 

Assume k is a separably closed field of characteristic p and let F be a formal 

group defined over k. The ring of F endomorphisms, 

End~,(F(Z,,  Z2)) C klZ],  

is defined as follows: a(Z)  E Endk(F(Z1, Z2)) if a(0) = 0 and a ( F ( Z b  Z,2)) = 

F (a (Z t ) ,  a(Z2)). For the ring structure on Endk(F(Z, ,  Z2)), addition is deter- 

nfined by the formal group, i.e., (al  +g  a2)(Z) = F ( a l  (Z), a2 (Z)), and nmltipli- 

cation given by the usual composition of series. Note that with respect to mul- 

tiplication (the usual composition law) we have Autk (F(Z t ,  Z2)) c Autk(k[Z~). 

For a(Z)  e Endh,(F(Z1, Z.~)) the height of c~ is defined by ht(a) = 0 if o.(Z) = 

0, and ht(a) = r if q = p'" is the highest power such that a(Z)  = 3(zq) ,  where 

/~(zq) E k[Zq]]. The height of F is defined to be 

ht(F)  = ht(~o]~), 

where 

[p]~- = Z +T Z + T " "  +-~ Z, 

addition p-fold. Having introduced the above notations we recall the following 

classical results we need: 

CLASSICAL RESULTS 3.1: Over a separably closed field of characteristic p the 1 

dimensional formal g~'Onl)S F are classified Ul) to isonmrphism by their heights. 

Fm'ther, if'ht(ff) = h and q = ph then 

(i) F is defined over Fq m~d Eh := Eml~q (F(ZI ,  Z2)) = Endk(F(Z1, Z2)); 

(ii) Eh is a free module of rank h 2 over Zp; 

(iii) Dh := EI~ ~-3 Qp is a division algebra of rank h. "2 over Qp; 

(iv) Eh is the maximal order of Dh: 

(v) the center of Dh is Qp. 
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CLASSICAL RESULTS 3.2: In the above sitttation of  the division algebra D~, over 

(i) There is a mlitllW eXl)Onontial vahtation, say t'. t'.x'tonding thnt on Qj, tn 

Dh. 

(ii) Eh = {,c E D/, : v(.r) > 0}. 

(iii) The Slcolt'nl .\'o¢'ther Theor¢'ul: For ally srlbti(,hls L. L r o f  D/,. i f  L ~ L' 

rnx,r Q1, then this isomorphism extends to nn ilm~'r mmmiorph i sm  o f  D/,. 

(iX') All.V f,xt('llsion o f  QI, o f  degree 11. say L. (':111 l)(, t,nll~otl(lod in DI, as ;I 

max imal  subfi('Id. 

(v) L('t c denote the l"mnificati(m ind~'x o f  D/, over QI, and .f t lw n,,sidtw clnss 

degr(,e. Thvn ~ = f = h. 

(vi) H' D/, (.ontMn,s' a primitiw, 1~-root o f  miit3, then l / ' - I ( p -  1 )[h. 

(rLASSICAL RESt'LaS 3.3: L(,t R = II'(F,~)[(,(,,)] with l,m'mnot('r 7r. wlwr(,q = 1/'. 

b = r p " - l ( p  - 1) with (r.p) = 1 and (.(,,) is . primitive 1~'-root o f  nnit3: Tl . ,n  

Fl(ZI .  Z2) := f [ -J( j t )(Zt) -t- J)(Z2)). where .f l(Z) := Z + 7 r - l . f / (Z / )  defi~,'s n 
Lul)in :Fate formal grOltl) such that: 

(i) the map ~: R ---+ En(I~(F/(Zt.  Z2)) tit,fined by 

~:(,,) = [ , , ] g ( z )  = J i - ' ( . . l ~ ( z ) )  

is ml iqiectivo rin~ homomorl)hism: 

(ii) [,],:; (Z)-= oZ rood Z 2 and [rr]l,; ( Z ) -  Z ' "  lnOd ~: 

(iii) Ft ( Z i . Z2 ) , <>l,t Mm'd In" l'('(lllcillg t hi' <'o('fit/t'J(*llt.,~ of Fl(Zi. Z2) 1110(1 ~. is ;I 

tin'raM groul> over Fq o f  height h: 

(ix') tho m~q) +': Endt¢(Ft(Zt.  Z2)) ) EndL~ (FI(Zi .  Z.,)}. ol>tainod In  wd~wing 

coefficients mr><hdo rr. is an injective ring homomorphism.  

4. L i f t i n g  o r d e r  1/' f o r m a l  g r o u p  a u t o m o r p h i s m s  

hi this s(,(.ti(m we l)rm'~' the following th(,or(,ln: 

THEOREM 4.1: Let  k 1~' a Selmralfly closorl field o f  clmrm'wristic p > i) m . I  . b~, 

a positive integer. Snppose G is an order p" cyclic gnml~ and that in th(, tlia~rmn 

below the mOrl)hism i tbctors t im)ugh Aut~.(F(Zj.  Z2)) tbr somo trot, dimonsionM 

tbrnml ,group F ( Z I .  Z2) over k o f  height b = rp" -  I (p _ 1 ). (r. p) = 1 : 

Aut~.(k~Z~) < Aut , . (F (Zt .  Z.2)) 

(;" 
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Th,'H i (G)  C A u t ~ , ( F q l Z ] )  C Aut#(k[Z~) .  where  q = p h  and  there  ex i s t s  a 

liftiug ,,f i: G -+ Aut ;., (F,~[Z~) ,,uor R = ll-(Fq )[Q,,)]. u'hich makes the diagnm~ 

A,,tu(R[Z]]) > A,, t~ (F,,[Z~) < Aut=,,(F(Z,.Z.2)) 

('Ollllllllt ;~ [ive. 

Proof? 

and that 

\Ve first not(, that using the classical results fl'om section 3 it follows that 

En,lk(F(Zi.  Z2)) = End:., (F(ZI .  Z.2)) =~ En(l-~ (-~t(Zi. Z+)) 

R ~" EmlR(FI(ZI. Z2)) ~-+ En(l!~ (Ft(Zl.  Z2)) = Eh. 

We set o = t' o ~ and ,)l)s(u've that it is all injective ring homonlorl)hism. Next 

we set 7 = o(@,)) E El,. a 1)rimitive p"-root of rarity. Note that ifN E Eh is any 

other 1)rimitive p"-root of rarity, then in Dh the Qp-isomorl)hism 

Q,, (7) ~ Q. (~) 

extends to an imwr autonmrl)hism of D/, by the Skolem Noether Theorem (see 

3 . 2 ( i i i ) ) .  H e n c e  c~ = ~ r 5 -  - 1  for some 5-E Dh. 

We next recall that if II is any mfiformizing parameter of Dh, then Qj)(II) is 

a totally ranfified extension of Qp of degree h. Now Qp (7) c Dh is a totally 

ranfified extension of Qj) of degree p,,.-l(p _ 1). Let L be a totally ranfified 

extension of Qp (7) of degree r. Then L can be embedded in Dh over Qp (7) as a 

totally ramified extension of Qp of degree h. Let H be a mfifornfizing parameter 

for this embedding, which will then also be a mfiformizing parameter for Dh. We 

have 

Qp C Qt,(7) C Qp(H) C Dh. 

Next we show that the element 5- such that ~ = "}r'~ 1 can be chosen so that 

it. is a unit in Eh = En(l~ (Ft(Zt,  Z2)). From this it follows that  

5- e Aut% (Ft(Zb Z2)) C Aut~q (Fq [Z~). 

Clearly 5- = u I I "  for some unit u. E Eh. Hence 

-~ ~ ttI-lmTI-I-mtz -1  = tf~tt - l ,  
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since II  and ~ both lie in the field Qp (II) so commute past each other. We replace 

~ b y u .  

Finally, let 

= ~(~(,,)) = [~(,~)]F, (Z) 

and choose ? C AutR(RIZI)  such that  7m od l r  = 7- Set a = 7T? -1, which is an 

order p~ automorphism of R~Z~ lifting y as required. 

OBSERVATIONS. 1. We note that  if p ~ 2, then the only finite p-groups con- 

tained in the multiplicative group of Dh are the p power cyclic groups. Indeed, 

if G C D~ is a non-cyclic p-group, then as p ~ 2, G contains a non-cyclic abelian 

group, say Go. But then as Qp is the center of D h (see 3.1(v)) it follows that  

Qp (Go) is a subfield of Dh. The only finite subgroups of the multiplicative group 

of a field are the cyclic ones, which is a contradiction as Go C Qp (Go)×. Hence 

for p ~ 2 the formal groups can only be applied to the lifting problem for cyclic 

groups. For p = 2 the division algebra Dh contains the quarterion group, which 

doesn' t  contain a non-cyclic abelian subgroup - -  so the argument does not apply 

here. 

2. The order pn automorphisms of R~Z~, respectively k~Z~, which are deter- 

mined by a Lubin Tate formal group as above are very special, as can be seen 

from their fixed point geometry and associated Hurwitz data, which is described 

briefly in [G-M2], pages 279 281. There, this is discussed as part  of a general 

study of order p automorphisms of the p-adic open disc, their fixed point geom- 

etry types and classification under certain assumptions. Results obtained there, 

as well as those obtained subsequently by Henrio in [He] characterizing possible 

fixed point geometry types for order p automorphisms, show that  the order p au- 

tomorphisms determined by a Lubin Tate formal group form a very small class 

among those of order p of R[Z], respectively k[Z L 

R E A L I Z I N G  SMOOTH LIFTINGS OF GALOIS COVERS OF CURVES.  Applying 

Theorem 4.1 above together with Theorem 2.1 and the local-global-principle for 

smooth liftings mentioned in the introduction, we obtain the existence of smooth 

liftings of galois covers of smooth curves from characteristic p to characteristic 

0, provided the p-part  of the inertia groups acting on the completion of the local 

rings at the points of the cover over k are p-power cyclic and determined by the 

endomorphism of a suitable formal group over k. More precisely: 

THEOREM 4.2: Let f: C > C/G := D be a G-galois cover of proper integral 

smooth curves over k. For each y C C we denote the p-part of the corresponding 
inertia group by (Iy)p. S~ippose that, (I~)p is pn~-cyclic and that, if n~ > 3, the 
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embedding  (Iv) p c Au tk (0c ,u )  ~ Aut,~.(k[Z~) factors through Aut.,:(Y(Z1, Z2)) 

for some one dimensionM formal group F(Za,  Z2) over k o f  height 

hy = , . p , ~ - l ( p _  a), (.,.,p) = 1. 

Let  n = maxv(nu) and Q,)  be a primiti~v p"-root  o f  unity. Then f can be lifted 

over R = W(k)[((~)] as a G-galois cover of  smooth  integral proper R-curves. 
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